NONLINEAR POWER-LAW RESISTANCE FLUID FILTRATION
THROUGH POROUS SEMISPACE WITH A GROOVE

V. I. Voronin UDC 532.546

A method is proposed for solving some planar problems of nonlinear filtration with power-
law resistance in the case of straight-line boundaries of the filtration region.

Plapar fluid filtration with nonlinear resistance law has been the subject of investigations in a number
of papers. One method which is very effective is the time curve method of Chaplygin which employs linear-
ization of the equations [1]-[4]. However, even when linearization had been used it was rather difficult to
obtain exact solutions in the general case,

A method is presented in the present work for solving nonlinear filtration problems for power-law
resistance based on the Chaplygin transformation. The main points of the method as well as its potential
are demonstrated on the example of a classical filtration problem through a porous semispace with a groove.

The stationary fluid motion in a porous body for power-law resistance is described by the system

W _ Varl o 0
B exp (—2et) po
, S . (1)
o  Vatl .  Op
ST exp (—2e) iR
By eliminating § from (1) and by the change of the variables
p = Qexp (1), (2)
the Helmholtz equation
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is obtained for the filtration under consideration. The relation between the variables 7 and g and the physical
coordinates is given by the equations
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A fluid filtration is now considered through a planar porous semispace with a groove BA (Fig. 1a) of
height d. Let the pressure be p; = const on the horizontal half-line CB and p = 0 on the half-line BD. At the
points C and Dat infinity one has 7 = —« and one has 7 = « at the point A, The filtration region for the
coordinate system xBy, adopted in the Fig. 1a in the variables v and j, is given by the infinite strip 0
= B = m (Fig. 1b). Since in the problem under consideration the symmetry of the flow lines with respect
to the Bx axis is obvious therefore the velocity is the same at the points B and B_. Suppose that to this

dv = — L exp (— V'n 4 171)cos fdp — exp (— ) sin Bd ¥,
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oY = — L exp (— y/ n -+ 11)sinBd p -+ exp (— ) cos Bd p.
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Fig. 1. Fluid filtration diagram through planar Fig. 2. Q(1,0) 1) and y(1, ™) ) as
porous semispace. functions of 7.

velocity v, there corresponds 7 = 0. The expression Q(r, 0) = exp (—€7) on the straight line CB tends to in-
finity for T — —< but it is Q(r, 0) exp (b7) — 0 for b > &€, It is obvious that Q(r, B) exp (b7) approaches 0 for
T——%, Q(1, ) = 0 for 7 — <,

One represents Q(r, 8) in the form of a generalized Fourier integral

w--ib ©
QG B = - S' exp () T (0, Bdh -+ — § exp (W9) @, (A, B dh, (5)
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where
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By inserting (5) in (3) and introducing the operator notation L( ) = [dz( )/ dB8% —q?( ) one finds that
oo-tib 1 @
L 51 exp (idt) L (Q) dh + — S‘exp (M) L(Q,)dr = 0.
25 2n
—w-ib —o0
It is not difficult to see that L(@Q-) is regular in some upper half-plane A and L(Q+) in a lower half-plane.
Therefore everywhere one has

d*Q

o —re=0, (6)
where Q =Q_.(A, 8) +Q_(, B). The solution of (6) is given by
= _A shgn—B) | 54 sh gp ™
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where
i
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To find the unknowns Q, (A, 0) and Q (A, 7) the boundary condition on the left~ and right-hand side of the
groove is used, namely

0Q(x, B)

=0, >0
® o (8)
Q&P | g >0
op B=n
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It follows from (8) that ?lQﬁ = ’{TL_ (x),% \ =V, (A), where ¥ (A and Eﬁ_()\) are regular in s9me
=
unpey haif-plane of the complex vayiable A. One finds with the ajd of (7) and (8) that
[@0, 0@, (. mlgeth £ = —F, o) 7,_(n, (9)
— —_ T o —
@@ 0 +Q 0 m]th 5’2— =F,_— T 9

It follows from the symmetry of the flow-lines that (9" can be replaced hy
G, G+Q, 2y =0. {10)

The system (@) and (10) iS investigated using the Wiener —Hopf method [5]. The notation

geth % =K (M),

i8 introduced and this expression is factorized:
KM =9, Mo,

where w_()) is regular and has no zeros in the lower half-plane and ¢_()) has the same properties in the
upper half-plane. By using the infinite-product expansions for sinhgr/2 and coshqr /2 and in view of the

v/ ) 1
fact that the series E ( — = —~) is convergent one can omit the corresponding exponential Weierstrass
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factors and one finds
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1t will be necessary in our subseguent considerations to have estimates of the behavior of these func-
ttons in their respective regelarity haif-plenes. Stariing directzy with the Jefinition of X{}) it is established
that gn the real axis both these functions are of the order v A,

The function
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is now investigated in the remainder of the regularity half-plane, Denoting the common term of the infinite
product by a) and setting A = Rel? ope finds that

l/1+ 2—R—sm6 + K
ks, 8 U
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The lggarithmic derivative of |ag] with respect ta 4 is

i
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The latter is positive in the upper half-plane for a motion in the direction of the imaginary axis; hence it
follows that | ¢_(0] increases. On the imaginary axis 6 = /2 and
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Therefore on the imaginary axis | ¢_(A)| also increases monotonically in the upper half-plane. The order
of magnitude of this increase is found by setting A = isj. Then

2k 8; 45, *IL.[ 2k 5; 4 5y, l:[ 2k ;8§
2 ' 2 '
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In the absolutely convergent infinite product

1% sds T .
[ 2 =Tla, ®=t—)
bt 2k—1  s;41,

=1

each of the factors is greater than unity; therefore, the product itself must exceed unity for any j. With j
increasing a,, decreases monotonically and the entire product decreases monotonically having as its limit
for j — ~ some value M = 1 (it follows from our subsequent considerations that M > 1). Consequently,
the order of magnitude of the increase of ¢_()) on the imaginary axis is determined by the product

M2 sts

%—1 541,

The general term of this product is
2k ;48 2k
%—1  s;4+r,  2%—1

a; =

Therefore, (m/ 2)¢_(isj) does not increase more rapidly on the imaginary axis [6] than

i me | —
M, = M #_Qk_____.Mgzi(_l')._zM‘/_“_‘;. s; .
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Since ¢_(iR) is monotonic it follows that this is also valid for any R. Employing now the previous estimates
it is established that one has

lp— (W =AM V],

on the entire upper half-plane where A(A) > w > 0 is bounded (« = const). The estimate thus obtained is
also valid for ¢ (A} in the lower half-plane.

By substituting the factorized K() in (9) one finds that

i

Q.0 0+ Qb W) =— —, (12)
A — ie
R NORENNS ANOE N (13)

Q.6 0—Q. 0 Wlo, M+ 5 RO
When the obvious behavior of p(r, 8) for 1 — *« has been taken into account one can establish without any
difficulty that the left- and right-hand sides of (13) are regular in the entire A-plane with the exception of the
pole at the point A =ie, At this point the Laurent expansion of these functions is valid for the entire plane.
Then in view of the obtained estimates for the function from (11) the regular part of the expansion can

be expressed by 2 polynomial which is identically equal to zero since for A — « the right-hand side of (13)
approaches 0 in the upper half-plane.

At the point X = ie the pole can only be simple since otherwise the originals for the Fourier trans-
formation would contain components with a multiplier 7™ (m a positive integer); this is not possible from
the physical considerations since the pressure is finite in the entire filtration region.

Hence by using (12) and (13) one finds that

i ia
+ )
A—ie A—ig)p, (M)

Q. (h 0)=—
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Q. (A, m) = —

where ¢ i5 2 real parameter,

One can determine Q (1, ) by using the residue theorem for the poles of Q (A, 7) in the upper half-
plane of the variable A:

:L r [ ) = — Bx 4 \ ,,—“—exp(_sjr) \
Q.(n ) =— J xp (AT, (h, k= afrenn( ”‘}?2 ) (15)

The condition Q,(0, r) is satisfied for the just found (15} for any a; in this case the Fourier tntegral
(15) can be evaluated by considering only the lower-half plane of A in which the subintegral function has no
singularities.

One aiso finds from {14) they

4 exp (— s
- — 1) — exp (— &1) — —— SR 4 N AL
Q, (%, 0) = exp({— e1) — 0 {*exp (— &%) & od 56— D0 (16)
The parameter ¢ can be determined from the obvious condition
. 1
im iQ4 (v, D)yesp (zr)] = [im [Q* (T, %) exp(gT)J = 16"
T~ T b

By using (15) or (16') one finds that a =1/2x.

Finally, one abhtaing

kd

Q, (x, m) = % exp (— ET) — 2 Z exp{— 5;%)
=1

n*x% 5,5, —OD(s)

L e 2 N e (s
Q. (v, 0) = 5 exp(— e + o ; 5; (5, — &) D))

The first expression () is used to find the filtration parameter x; lategrating it for 8 = ¢ with re-
Spect to T hetween the limits 0 and « and wsing (L6) one finds:

@
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For the case of n =1 (quadratic filtration) it was found from (17) that y = 0.17.
From (12), (13), and (14) one obtains that

AR

b T e - (19

By applying the residue thearem to the expression (18) one obtajns

aQ (v, f) VR R N
o - = — 7ex33{ £1) — L

'Ok}

(19}
) if, P exp(r,T}

i=l

(1<<0).
Using the second expression in (4) as well as (1), (19), and (2) one obtains

j= L fexp(—ynrin—1]
X
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The formula (20) describes the distribution of the velocities of setting down along the right-hand boundary
of a porous half-space where 7 < 0.

=1

The graphs of Q =Q . (r, 0) and y = y(r, 7) for the case of quadratic filtration are shown in Fig. 2.

NOTATION
T, B are the Chaplygin variables;
T=Vvn+1inv/vy
¥ =7/ vyd is the dimensionless flow function;
p=p/Dpt is the dimensionless pressure;
d, are the characteristic dimension and pressure;
x =vitla/ poy is the dimensionless filtration parameter;
oy is the constant characterizing porous medium and fluid;
n+1 is the degree of filtration (at n = 0 filtration is linear);
Xx=x/d,y=y/d;
A is the Fourier parameter;
q=v A +e¥ '
s =V @k —1)? + €
Ty = 41{2 + 82;
e =n/vn+1;
ok 1 2+
D (2 = ’_‘22_ . Z_I_S; ’
f==1
1 2k — 1 n,—e
e @ :ﬂ 2% T os—e =00, _
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